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Abstract   We have formulated a 3D finite-difference method (FDM) using 

discontinuous grids, which is a kind of multigrid method.  As long as uniform grids are used, 

the grid size is determined by the shortest wavelength to be calculated, and this 

constitutes a significant constraint on the introduction of low velocity layers.  We use 

staggered grids which consist of, on the one hand, grids with fine spacing near the surface 

where the wave velocity is low, and, on the other hand, grids whose spacing is three times 

coarser in the deeper region.   In each region, we calculated the wavefield using velocity-

stress formulation of second order accuracy and connected these two regions using linear 

interpolations.  The second order finite-difference (FD) approximation was used for 

updating.  Since we did not use interpolations for updating, the time increments were the 

same in both regions.  The use of discontinuous grids adapted to the velocity structure 

resulted in a significant reduction of computational requirements, which is model dependent 

but typically one fifth to one tenth, without a marked loss of accuracy. 

 

 

Introduction 

 

     As a method of seismic wave simulation, 

the finite-difference (FD) approximation has 

frequently been used to solve equations of 

motion numerically for a couple of decades (e.g. 

Boore, 1972; Kelly et al., 1976), and the 

formulation using staggered grids is commonly 

employed at present (e.g. Virieux, 1984, 1986; 

Levander, 1988; Graves, 1996).  Many 

researches have been carried out, such as the 

research of free boundary conditions on the 

surface (e.g. Vidale and Clayton, 1986; Stacey, 

1994; Pitarka and Irikura, 1996; Ohminato and 

Chouet, 1997), elastic and liquid medium 

boundary conditions as boundary conditions on 

the seabed (e.g. Okamoto, 1996), non-reflecting 

(e.g. Cerjan et al., 1985) and absorbing (e.g. 

Clayton and Engquist, 1977; Stacey, 1988; 

Higdon, 1991) boundary conditions to avoid the 

reflected waves from the boundary of a finite 

computational region, as well as the introduction 

of a double couple point source (e.g. Alterman 

and Karal, 1968; Vidale and Helmberger, 1987; 

Helmberger and Vidale, 1988; Frankel, 1993; 

Graves, 1996), which is a particular issue for 

applying finite-difference method (FDM) in 

seismology.  The FDM is one of the most 

practical waveform simulation methods in use 

today. 

     The improvement in computer capacities 

has made it possible to carry out simulations of 

a three dimensional wavefield with realistic 

velocity models on a large scale, such as the 

ones for the Kanto Plane （e.g. Sato et al., 1998; 

Sugawara et al., 1997) and the Los Angeles 

Basin （e.g. Yomogida and Etgen, 1993; Olsen 

and Archuleta, 1996; Graves, 1998).  However, 

despite its considerable influence on waveforms, 

the low velocity layer near the surface cannot 

be incorporated into such models.  For example, 

in the Kobe area where extensive damage 

occurred in the 1995 Hyogoken-Nanbu 

Earthquake, numerous geophysical explorations 

such as a reflection survey, refraction survey, 

and microtremor observation were performed, 

and detailed 3D seismic wave velocity 

structures have been proposed (e.g. Huzita, 
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1996).  Ground motion simulations performed 

by Iwata et al. (1998) and Pitarka et al. (1998) 

using a 3D FDM and models of the underground 

structure in the Kobe region successfully 

reproduced an extension of the severely 

damaged band of the earthquake.  Meanwhile, 

due to the high values of the adopted shear 

wave velocity of the near-surface sediments, 

the amplitude of the simulated strong motions 

were smaller than those observed.   

     As long as uniform grids are employed, 

their size is determined by the shortest 

wavelength to be calculated.  Thus, the entire 

region must be divided into small grids even 

when the layer of low velocity only occupies a 

small part.  This considerably increases the 

computational requirements in terms of time 

and memory.  Using the 3D FDM, in order to 

calculate up to the frequency N times higher, or 

in order to introduce low velocity layers in 

which the wave velocity is N times smaller (i.e. 

reduce the grid size to 1/N), N3 more memory, 

and N4 more computation time are required.  

Therefore, we cannot depend on the progress of 

computing capacities exclusively for 

computations on a large scale.  Moreover, in 

order to perform the underground structure 

inversion (e.g. Aoi et al., 1995, 1997), it is 

necessary to calculate the waveforms many 

times, so a method enabling quick calculations 

of waveforms is required.   

     When the wavefield is calculated by the 

FDM, the grid size near the surface should be 

as small as possible for the following reasons:  

- the wave velocity of the near-surface 

sediment is relatively low; 

- the underground structure is extremely 

heterogeneous; 

- free surface boundary conditions that must be 

imposed on the free surface tend to be unstable, 

and in many cases we are interested in 

waveforms at the surface;  

- when the grid is staggered the wave-field 

variables are not defined at the same position; 

- the energy of the surface waves is 

concentrated near the surface, and its group 

velocity is slower than S-wave velocity.  

     Pitarka et al. (1996) represents an 

attempt to evaluate the influence of the surface 

layer on the wavefield without dividing the 

region into small grids unnecessarily.  In this 

method, the waveforms are first calculated by a 

2D FDM using the structure model without the 

surface layer of low velocity.  Then the effects 

of this layer on the waveforms are considered 

using the convolution of 1D transfer functions, 

evaluated by the propagator-matrix technique 

(Haskell, 1953).  However, this method merely 

evaluates the influence of the shallow layer in 

an approximate way.  Another approach is to 

take a coarser grid spacing by enhancing the 

accuracy of FD approximation, using such 

methods as an FDM with spatial difference of a 

higher order (e.g. Yomogida and Etgen, 1993) or 

a pseudospectral method (e.g. Furumura, 1992).  

However, the coarse grid spacing does not 

enable the modeling of detailed parts of the 

structure, and the computation accuracy is not 

sufficient in structures having discontinuities 

with a high contrast.  In order to achieve a high 

level of accuracy in computation, it is necessary 

to use sufficiently small grids.  Thus, if we wish 

to calculate waveforms by the FDM using 

models that include near-surface layers with 

low velocity, we need to employ non-uniform 

grids that are adapted to the velocity structure. 

There are two types of non-uniform grids, 

continuous and discontinuous. 

     Continuous grids are the grids with the 

optimal distribution of grid spacing achieved by 

continuous mapping.  Examples of methods 

using continuous grids include refining the grid 

spacing in the vicinity of the free surface (e.g. 

Moczo, 1989; Carcione, 1992), reducing the grid 

spacing in the vicinity of the fault plane (e.g. 

Mikumo et al., 1987; Mikumo and Miyatake, 

1993), refining the grid spacing within a given 

region (e.g. Pitarka, 1999) and making grids that 

generally follow the interfaces of media (e.g. 

Fornberg, 1988; Nielsen et al., 1994).  These 

methods are free of artificial computational 

errors resulting from sudden changes in the grid 

spacing, since they allow for a continuous 

reduction in grid spacing.  On the other hand, 

their shortcoming is that the number of grid 

points can be changed only along the coordinate 

axis.   

     With regard to discontinuous grids, the 

grid system consists of several regions, each of 

them having a uniform grid.  This is a kind of 
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multigrid technique which is already in use in 

the field of fluid mechanics (e.g. McBryan et al, 

1991).  At the boundary of each region, the 

FDM has to be formulated in a way that 

maintains the continuity of the wavefield.  

Examples of waveform simulations by the FDM 

using discontinuous grids include reducing the 

grid spacing in the vicinity of the free surface 

(e.g. Moczo et al., 1996), refining the grid 

spacing in the vicinity of the borehole (e.g. Falk 

et al., 1996; Kessler and Kosloff, 1991) and 

avoiding grid spacing which is too small in the 

central part of the cylindrical coordinate (e.g. 

Furumura et al., 1998).  However, these are all 

examples of 2D problems.  Examples of hybrid 

methods using both grid systems include 

Jastram and Tessmer (1994). 

     Numerous issues of seismology deal with 

structures in which the wave velocity is lower in 

the shallower part and higher in the deeper part.  

In such cases, grids that are discontinuous in 

the vertical direction are often advantageous.  

This is due to the fact that as long as 

continuous grids are used, even in the deep part 

where the velocity is much higher, the number 

of grids in the horizontal direction cannot be 

reduced, and that accordingly, the grid spacing 

in the horizontal direction cannot become 

coarser.  In the present paper, we present an 

FD technique that is based on a discontinuous 

grid.  We also analyze its accuracy by 

comparisons with waveforms produced by the 

discrete-wavenumber method (DWNM) 

(Bouchon, 1981; Schmidt and Tango, 1986) and 

by the FDM using uniform grids. 
 
 

Method 

 

Formulation of the FDM with Discontinuous 

Grids 

 

     We used a discontinuous grid that 

consists of two regions with different grid 

spacing.  Figure 1 shows the unit cell of the 

grid and the 3D discontinuous grid together with 

its cross-sections.  The grid spacing of Region 

I is small (the grid spacings in directions x, y 

and z are x∆ ,  andy∆ z∆ , respectively), whereas 

the grid spacing of Region II is three times 

Fig. 1: (center）3D discontinuous grid system and a unit cell for staggered grids (inside the circle).  

(left) Two transections on the top and at the bottom of the overlapping region of Regions I and II, 

where the elimination or the insertion of grid points are necessary.  (right) Two profiles of the 

discontinuous grid.  The arrows A-E show the overlapping region of Regions I and II, and the 

details of the interpolation are given in Table 1. 
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Table 1 
How to up-date the time step of variables on 

each plane 
 Region I Region II 

Region I FDM ---- 

A FDM Interpolation 

B and C FDM ---- 

D Interpolation FDM 

E ---- FDM 

Region II ---- FDM 

coarser (the grid spacings in directions x, y and 

z are 3 , 3 and 3x∆ y∆ z∆ , respectively).  In each 

region, a 3D staggered grid FDM of second-

order accuracy in time and space is employed.   
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     The discretized equations of motion are 

given by 
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and the discretized stress-strain relations are 

represented as 
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                                      (2). 

zyx vvv ,,

zzyyxx ttt ,,,

 represent the particle velocity, 

 are the stress components, and 

 are the body force components.  

yzxzxy ttt ,,

zyx fff ,,

x∆ ,  and y∆ z∆  represent the grid spacing in 

the ,  and x y z  directions, respectively.  t∆  

denotes the time increment.   is the 

buoyancy (inverse of density), and 

b

λ  and µ  

are Lame constants.  We used effective media 

parameters which were calculated using Grave's 

formulation (Graves, 1996).  An elastic 

attenuation is introduced in the same way as in 

Graves (1996). 

n 1+n

 

      Only the field variables (velocity and 

stress components) that are adjacent to the 

variable to be updated are required to update 

the wavefield from the time level t  to t .  

As it is clear from equations (1) and (2), when 

the FD approximation of second-order accuracy 

is employed for the spatial derivatives, the field 

variables that are within the distance of half-

grid spacing in the ,  and x y z directions are 

required.  Accordingly, only the field variables 

at the bottom plane of Region I and the top 

plane of Region II cannot be calculated by 

staggered grid FD operators (Fig. 1 and Table 1).  

Therefore, the field variables of these two 

planes must be calculated by inserting or 

eliminating the grids of the other region and by 

using interpolation of the wavefield across the 

two regions. 
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Fig. 2: Grid points location on the plane for 

interpolation, where (I, J) and (i, j) are local 

numberings for the interpolation. 

Interpolation 

 

     In this section we explain the technique 

used to interpolate the wavefield at the 

boundary between Regions I and II.   

     Regions I and II overlap in the vertical 

direction, covering the distance of .  The 

field variables at the top plane of Region II 

cannot be obtained through the FD solutions.  

However, since the locations of the grid points 

at the top plane of Region II are identical to 

those of Region I, the field variables of the 

latter can be employed as those of the former 

(Fig. 1).   

2/3 z∆

     The field variables at the bottom of 

Region I are obtained by an interpolation 

scheme, using the field variables in Region II 

obtained by the FDM.  What is interesting here 

is that the interpolations of all field variables 

are carried out within one horizontal plane, and 

that apart from these interpolations, the time 

updates of variables are carried out by the FD 

calculations (Table 1). 

     The linear functions  

              (3) 
)10()(

1)(
1

0

≤≤=

−=

xxxa

xxa

are used for the interpolation.  Table 2 

indicates the weights for the interpolation 

obtained from these functions (equation (3)). 

These weights correspond to the points, x=0, 

1/3, 2/3 and 1, when the grid reduction factor 

is 3.   

     The variables must be interpolated on the 

x-y plane at the bottom of Region I (Fig. 1, 

bottom left), and the grids are positioned as 

shown in Figure 2, where (I, J) and (i, j) are local 

indexings for the interpolation.  The field 

variables obtained by the interpolation scheme 

are 

   
u

    (4) 
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where  and  indicate the field variables 

in Regions I and II, respectively.   
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Boundary Conditions 

 

     Boundary conditions are imposed to avoid 

artificial reflections from the boundary of the 

finite computational region.  The most popular 

techniques used to avoid boundary reflections 

are absorbing (e.g. Clayton and Engquist, 1977; 

Stacey, 1988; Higdon, 1991), or non-reflecting 

(e.g. Cerjan et al., 1985) boundary conditions.  

The former is a method of realizing the 

boundary conditions that make the reflections 

of the body wave with a specific wavenumber 

vanish at a grid or a few grids in the vicinity of 

the boundary.  The latter is a method of 

eliminating the reflected waves through their 

gradual attenuation by setting an absorbing 

region outside the boundary.  Absorbing 

boundary conditions do have certain advantages 

in terms of computational requirements.  

However, apart from the case of the body wave 

with a specific wavenumber (normally a vertical 

incident wave), of which the reflections vanish, 

the method cannot realize a perfect absorption.  

On the contrary, approximately 10 to 20 % 

additional memory and computation are required 

to realize the non-reflecting boundary 

conditions.  This method is capable of 

absorbing the waves almost completely 

regardless of whether it is a body wave (of any 

wavenumber) or a surface wave.  Here we used 

the non-reflecting boundary conditions of 

Cerjan et al. (1985).   

     In Cerjan et al. (1985), Gaussian functions 

given by 

     W          (5) ),,2,1(),)(exp( 0
2

0 JjjJ ⋅⋅⋅⋅⋅⋅=−−= α

and  

                      (6) 
),,,(

2/12/1

zyxqpW

vWv
n
pq

n
pq

n
p

n
p

=⋅=

⋅= ++

ττ

are used to attenuate the wavefield close to the 

boundary.  According to Cerjan et al. (1985), 

015.0=α  and  are the most appropriate 

values.  Therefore these values are employed 

200 =J
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in Region II.  In Region I, 005.0=α  and  

are employed because the process of 

attenuation must be continuous with Region II. 

600 =J

60     Though the number of grids  in 

Region I is relatively large, the memory and 

computation time required to realize the non-

reflecting boundary condition are negligible 

compared to those saved from the use of the 

discontinuous grids.  Moreover, as the 

computation scale increases, the ratio of 

memory and computation used for the absorbing 

region to those used for the entire calculation 

decreases accordingly.  For example, in a 

model with 2000*2000 grids in two horizontal 

directions, the ratio that the absorbing region 

occupies is less than 13 % of the entire region, 

and consequently, the increase of the 

computational requirement is hardly significant.  

However, in a case where the computational 

region is extremely flat, this ratio may become 

too significant to be neglected.  One approach 

to solve this problem is to make the grid 

spacing in the absorbing region in Region I 

coarser, so that it will be identical to the grid 

spacing of Region II （

0 =J

x∆3 , ）, thus reducing 

the number of grid points  to 20.  However, 

this approach is limited to structures in which 

the wave velocity is high near the absorbing 

boundary of Region I. 

y∆3

0J

 

Stability Conditions 

 

     The stability condition for the constant 

grid spacing FD technique is  

     1
111

222
<

∆
+

∆
+

∆
∆

zyx
tpV              (7).   

In the present method, this condition must be 

satisfied in both Regions I and II, because we 

use the constant grid spacing FD technique in 

each region.  Since we do not use 

interpolations for updating the wavefield, the 

time increments are the same in both Regions I 

and II.  This means that we use the minimum 

values of the time increments ( ) determined 

by equation (7) for both regions.   

t∆

Table 3 
Physical parameters of the structure model 

 Case 1 Case 2 

Structure Horizontally stratified structure 3-D basin structure 

Shape     ---------------------- 

Paraboloid of revolution 
Diameter 20 km 
Center x = -0.05 km, y = 0.0 
km 

Vp 2.4 km/s 

Vs 0.8 km/s 

Density 1.8 km/s 
Sediment 

Thickness/Max. 
depth 1.0 km 

Vp 4.3 km/s 

Vs 2.5 km/s Rock 

Density 2.5 g/cm3 
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Table 4 
Source parameters 

 Case 1 Case 2 

Source 

location 
x=-1.2 km, y=-1.2 km, z= 9.4 km 

Source time 

function 
Ricker wavelet ( Tc = 3 sec ) 

Source type 

Single force 

point source 

( x-direction ) 

Double couple point 

source (strike=60o, 

rake=30o, dip=60o) 

             0.46257
             0.43445
             0.35193
             0.24104
             0.19161
             0.26249
             0.29423
             0.27459
             0.27347
             0.26438
             0.25167
             0.24637
             0.23867
             0.22884
             0.21741

             0.19199

             0.16037

             0.15207

             0.16204

             0.17688

             0.18951

             0.19827

             0.20420

             0.20929

             0.21498

             0.22180

             0.22970

             0.46830
             0.43921
             0.35424
             0.23978
             0.18933
             0.25926
             0.29063
             0.27144
             0.27155
             0.25987
             0.25388
             0.24845
             0.24055
             0.23056
             0.21887
             0.20609
             0.19294
             0.18029
             0.16916
             0.16039
             0.15463
             0.15196
             0.15201
             0.15420
             0.15786
             0.16245
             0.16747
             0.17261
             0.17760
             0.18229
             0.18653
             0.19027
             0.19352
             0.19635
             0.19878
             0.20087
             0.20271
             0.20439
             0.20599
             0.20757
             0.20919
             0.21089
             0.21270
             0.21464
             0.21671
             0.21892
             0.22125
             0.22371
             0.22627
             0.22894

 
Fig. 3: Velocity waveform of the x-component at the 

observation points on the z-axis ( , with 

spatial interval of 100 m.  This interval is 300 m in 

Region II) in the 1D structure, calculated (a) by the 

FDM using discontinuous grids and (b) by the FDM 

using a uniform grid.  The figures on the right are the 

maximum absolute value of amplitude (hereinafter 

maximum amplitude) of each waveform.  On the left, 

kmzkm 9.40 ≤≤

the schematic of the structure employed is shown.  

The arrow indicates the boundary between the two 

regions. 

 

 

Examples of computation 

 

     The method proposed in this paper was 

used to calculate the waveforms in a 1D 

structure (horizontally stratified structure) and 

in a 3D basin structure.  The results are 

compared with those obtained with a staggered 

grid FDM using uniform grids, in order to 

demonstrate the accuracy of the proposed 

method.  The results obtained with the 1D 

structure are also compared to those of DWNM.   

 

1D structure case 

 

     The structure is horizontally stratified and 

consists of two homogeneous layers the 

parameters of which are shown in Table 3.  We 

use a single force point source acting in the x-

direction which is located at (-1.2 km, -1.2 km, 

9.4 km).  Its source time function is a Ricker 

wavelet with a characteristic period of 3 sec. 

(Table 4).   

     Regarding the discontinuous grids 

employed in this calculation, their grid spacing is 

100 m and 300 m in Regions I and II, 

respectively.  The depths of Regions I and II 

are 1.5 km (15 grid points) and 18 km (60 grid 

points), respectively.   

     The time increments derived from the 

stability condition, equation (7), in Regions I and 

II are  sec. and sec., 

respectively.  Though the grid spacing in 

Region II is three times coarser than in Region I 

and the time increment can be three times 

longer accordingly, in our study the same time 

increment 

01343.0<∆t 04049.0<∆t

t∆  = 0.0125 sec. is employed in both 

regions.  The use of a longer time increment in 

Region II and the interpolations of time sampling 

can further reduce the computation time.   

     Using a Ricker wavelet with a 

characteristic period of 3 sec. the minimum 

number of grids per wavelength in the entire 

computational region is 12.    

     In the computation using a continuous 

grid, the grid size is 100 m (155 grids in vertical 

direction) in the entire region of computation, 

and the time increment is identical to that of 

the computation with the discontinuous grid. 
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Fig. 4: Velocity waveforms of the x-component at

the observation points on the x-axis

( kmxkm 5.220.2 ≤≤− , with an interval of 500 m) in

the 1D structure, calculated (a) by the FDM using

discontinuous grids and (b) by the FDM using

uniform grids.  The figures on the right are the

maximum amplitude of each waveform.  On the

left, the schematic of the structure employed is

shown. 

     Figure 3 compares synthetic seismograms 

calculated at a vertical receivers array with the 

proposed scheme using a discontinuous grid and 

the uniform grid scheme.  The array covers the 

depth range between 0.0km and 4.9km and the 

interval between stations is 100m (300m 

interval for Regions II).  There is an excellent 

match between the waveforms computed with 

the two grids.  This indicates a high level of 

accuracy of the linear interpolation at the 

boundary between the two Regions.  The 

accuracy is also confirmed by the continuous 

propagation of the wave passing the boundary 

(shown by the arrow) which is characterized by 

 

Fig. 5: The results of computation, by the FDM using discontinuous grids (dashed line), the FDM using uniform 

grid (thin line) and the DWNM (thick line).  The waveforms in the lower part of the figure (dot line) show the 

difference in the results by the FDMs using the uniform grids and those using discontinuous grids.  On the 

right of each waveform, the maximum and minimum amplitudes are indicated. 
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the absence of artificial reflected waves or 

disturbed waves (Fig. 3 (a)). 

     Figure 4 shows the comparison of 

synthetic seismograms calculated at receivers 

on the free surface.  The receivers are aligned 

along the x-axis (-2.0km to 22.5km) and their 

spatial interval is 500m.  As in the previous 

case, the comparison between the waveforms 

computed with the two techniques is very good.   

     In order to examine in detail the errors of 

the proposed scheme, the waveforms obtained 

by the FDM using a discontinuous grid, the FDM 

using uniform grids and the DWNM, at the 

observation points shown by circles in Figures 3 

and 4, are shown in Figure 5.  The bottom 

traces of each figure are the differences 

between the result from the FDM using a 

discontinuous grid and the one using uniform 

grid.  As shown in Figure 5, all three methods 

resulted in amplitude and arrival times for all 

phases that are almost identical.  At all 

receivers, the differences in amplitude is within 

15 % of that calculated with the FDM using 

uniform grids except for the observation points 

which are far from the epicenter and whose 

amplitude is small.  Moreover, the 

corresponding results of the FDM and the 

DWNM indicate a sufficiently high level of 

accuracy of the former one. 

 

 

3D basin structure case 

 

     Here, synthetic seismograms calculated 

with the proposed FDM using discontinuous grid 

are compared to those of an FDM using uniform 

grid.  In order to check the accuracy of the 

present method in the case of a more complex 

structure we used a basin model (Table 3).  

The basin model consists of a homogenous half 

space (bedrock) and a homogenous sedimentary 

layer.  The basin geometry is a half paraboloid 

with a diameter of 20km and maximum depth of 

1.0 km.  The center of the paraboloid is at x=-

0.05 km and y=0.0 km.  The grids and source 

location employed for the computation are 

identical to those used in the 1D case.  The 

source is a double couple point source with the 

strike, rake and dip angles of 60o, 30o and 60o, 

respectively (Table 4).   

    Figures 6 (a) and (b) show the comparison 

of the synthetic seismograms calculated with 

the FDM using both discontinuous grids and 

uniform grid at observation points having the 

same locations as in the 1D case.   
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Fig. 6: Velocity waveform of the x-component at 

the observation points on the z-axis 

( , with an interval of 100 m.  This 

interval is 300 m in Region II) in a 3D basin 

structure, calculated (a) by the FDM using 

discontinuous grid and (b) by the FDM using 

uniform grid.  The figures on the right are the 

maximum amplitude of each waveform.  On the 

left, the schematic of the structure employed is 

shown.  The arrow indicates the boundary 

kmzkm 9.40 ≤≤
9



Fig. 7: The results of computation by the FDM using discontinuous grids (dashed line) and the FDM using 

uniform grid (thin line).  The waveforms in the lower part of the figure (dot line) show the differences between 

them.  The maximum amplitude is indicated on the right of each waveform. 

      The basin induced surface waves are 

dominant.  In spite of the complicated 

wavefield, both methods resulted in amplitude 

and arrival times for all of the phases that are 

almost identical, as in the 1D case.  The 

absence of reflected waves or disturbed waves 

at the artificial boundary between Regions I and 

II indicates that the wave is continuously 

propagated.  The fact that surface waves are 

trapped by the sedimentary layer indicates the 

importance of high computational accuracy in 

the surface layer, which means the importance 

of using small grid spacing in the surface layer. 

 

Discussions 

 

     In synthesizing waveforms by the FDM 

using discontinuous grids, the most important 

point is the accuracy of interpolations.  In 

order to assist the quantitative evaluation of 

the accuracy of the linear interpolation scheme 

employed in this study, the interpolation of the 

1D problem is considered here.  One period of 

the cosine function,  

    (9), 
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≤≤−+

=
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xx
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λλ
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     Figure 7 shows the waveforms of the x-

component at five observation points.  

Waveforms show an excellent agreement and 

the differences between the result from the 

FDM with two kinds of grids are within 10 % at 

all of the observation points.   

is discretized by the spatial interval , and 

each discretized point is called .  The cosine 

function discretized with 10 grid points per 

wavelength (i.e. 

X∆

jX

10/ =∆Xλ ) is shown in Figure 8 

(a).  This function is resampled, with an interval 

of x∆ (which is 3/X∆ ） , using linear 

interpolations.  The discretized points are 

denoted by .  Figure 8 (b) shows the 

resampled function, and Figure 8 (c) indicates 

the difference between the discretized function 

ix

     In both 1D and 3D model cases, the use 

of the discontinuous grid enables us to save 

computation time and memory to approximately 

1/4.5 of what was needed when the uniform grid 

is used. 
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Fig. 8: Evaluation of error in the linear 

interpolation.  (a) Cosine function 

discretized with 10 grid points per single 

wavelength (i.e. 10/ =∆Xλ ).  (b) Resampled 

function with ane interval of  (which is 

3/X∆ ）, using linear interpolations.  (c) 

Difference between the discretized function 

and the exact value of the original function.  

(d) Evaluation of differences, repeated 10 

times, shifting the sampling points  by 

 each time.  In this case, the error of 

interpolation is 0.022 (2.2 %). 

jX

10/X∆

and the exact value of the original function.  

The maximum absolute value of this difference 

divided by the maximum absolute value of the 

function, which is 1.0, is defined as the 

interpolation error:  

     )(max/)(max xfxff ii −=error           (10). 

if

/

 shows the values of the discretized function 

at resampling points .  In this case, the 

interpolation error is 2.1 % (0.021).  The values 

of interpolation error show some changes when 

the sampling points are shifted in the space.  

The evaluation of errors is repeated 10 times, 

shifting the sampling points  by  each 

time.  These interpolation errors are shown in 

Figure 8 (d), and as a result, in the case of 

ix

jX 10/jX

10=∆Xλ , the interpolation error of the 

interpolation is 2.2 %.  The evaluation of the 

interpolation error is performed for a case 

where X∆/λ is 3 to 15; the outcome is shown in 

Figure 9.  According to this figure, the 

accuracy of the interpolation increases 

monotonously when the grid spacing becomes 

smaller.  Based on the sampling criterion of the 

FD approximation of second-order accuracy, 

the grid spacing should satisfy the condition 

10>∆X/λ  (e.g. Virieux, 1986), and accordingly, 

the accuracy of the interpolation is more than 

2.2 %.  As we explained earlier, the interpolation 

of each field variable is performed on a 

horizontal plane, which means that we apply a 

2D interpolation.  However, its accuracy is 

almost the same as that of the 1D interpolation, 

because the interpolations in the x- and y-

directions are carried out independently.  This 

analysis shows that a sufficient accuracy is 

obtained by using the linear interpolation, in an 

FD approximation of second-order accuracy is 

employed.   

     We have discussed the relation between 

the wavelength of the cosine function and the 

errors by linear interpolations.  Although it is 

important to examine how the interpolation 

errors propagate through the wave equation 

which is sensitive to discretized partial 

derivatives, it is difficult to separate the errors 

due to the interpolation scheme alone from 

those caused by the grid dispersion and non-

reflecting boundaries.  Compared with such 

errors that are thought to be small enough in 

the applications, interpolation errors are of the 

same order or smaller.  This means that the 

interpolation method we used has a sufficient 

level of accuracy.  The problem of error 

propagation has to be solved in the future.    

     We also evaluated the ratio κ , which 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Errors of linear interpolation.  The errors of 

interpolation become smaller when the number of 

grid per single wavelength is smaller.  When it is 

less than 10, the error of interpolation is less than 

2.2 %. 
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represents the memory saving by the present 

method in comparison with the constant grid 

spacing FD technique.  When  

represents the entire region to be calculated, 

and the depth of Region I is given by 

zLyMxN ∆⋅×∆⋅×∆⋅

zl ∆⋅ ,  
)3 0J+

NJ010+

     
))(2)(2(

26)(6)(6(271

000

00

JLJMJN
LlJMJN

+++
+++

=κ      (11). 

If  and  are assumed, then LNM == NJ <<0

     







+×








+=

N
J

L
l 010

1261271κ             (12). 

( ) 27261 Ll+  is a term representing how much 

memory is saved by using a grid which is three 

times coarser in Region II, and 1  is a 

term representing the disadvantage resulting 

from the larger absorbing region of Region I.  

The typical value of Ll  being approximately 

1/10 to 1/20, ( ) 27261 Ll+  is approximately 1/10.  

When  is 2000, N NJ0101+  is 1.1, which is a 

loss that can be neglected.  The computation 

time for interpolations is less than a few 

percent of the entire computation time.  Thus, 

a ratio similar to the case of the memory is 

saved in computation time as well, that results 

in an approximately tenfold saving of both 

memory and time.   This signifies that the 

introduction of the present method can reduce 

the grid spacing to less than half without 

imposing an additional load on the computers. 

 

 

Conclusions 

 

     One of the biggest problems in 3D wave 

propagation modeling using the FDM with a 

uniform grid is the high computational 

requirements.  These requirements are related 

to the oversampling of the models due to the 

constant grid spacing in the region with high 

velocity.  In order to avoid oversamping it is 

necessary to use non-uniform grids that are 

adapted to the velocity structure.  In this study 

we used a discontinuous grid that consists of 

two regions of different grid spacing.  The grid 

spacing ratio between the two regions was a 

factor of three.  By connecting these two 

regions by eliminating or inserting grids, we have 

succeeded in dramatically reducing the 

computational requirements, without 

significantly diminishing the accuracy of the 

calculation.  In the case where Region I 

occupies 10 % of entire region, we can reduce 

the computational requirements to 

approximately 1/10 and this means that the grid 

spacing can be reduced to less than half 

without increasing the computational 

requirements. 

     The examination of the accuracy of linear 

interpolation employed in this study by a simple 

cosine function showed that the accuracy 

increases monotonously when the grid spacing 

X∆  decreases.  It was also shown that when 

the number of grid points per wavelength is 

more than 10, the interpolation error is less 

than 2.2 %.  Accordingly, as long as an FD 

approximation of second-order accuracy is 

employed, which means X∆/λ  must be more 

than 10, a sufficient level of accuracy is 

obtained by using the linear interpolation. 

     A more flexible grid system will be further 

realized by increasing the number of the regions, 

and/or by using the hybrid methods that 

combine discontinuous grids with variable 

spacing.  Also the interpolation of the time 

sampling can reduce the number of time 

increments, rendering the computation time 

ever shorter. 
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